

Mineral Wool Site (1981-1986)

- Blow wool and batt wool manufactured using blast furnaces using copper and antimony slags, limestone, coke and basalts.
 - Wastes consist of cooling waters and slag deposits
 - COCs antimony, copper, lead
- aerial deposition, waste water, surface water runoff
- Initial investigation complete

Site Features

Ν

One way to look at things

Objective:

- Compare ISM results with standard investigation results
- Compare ISM results based on number of increments.
- Compare costs from ISM and Standard techniques

Is ISM better, cheaper, and faster?

Decision Units - selection criteria

- Impacted soils identified during the initial RI;
- Locations of stockpiled waste;
- Transition zones between undisturbed soil and waste material;
- Historical Site operations
- Accessibility

Decision Units

0 50 100 150 Feet

MINERAL WOOL INSULATION MANUFACTURING ISM DU Sample Location Map

	Media	Samples	Objective		
DU-1	Waste	✓ 3 replicate ISM samples	 Determine representative metal concentrations across DU 		
DU-2	Waste, underlying soils	 ✓ 3 replicate ISM surface samples ✓ 3 replicate ISM subsurface samples 	 ✓ Determine representative metal concentrations across DU ✓ Use subsurface samples to assess vertical migration 		
DU-3	On-Site Soils	✓ 3 replicate ISM samples✓ 30 grab samples	 ✓ Determine representative metal concentrations across DU ✓ Compare ISM sample with results from 30 grab samples 		
DU-4	On-Site Soils	 ✓ 3 replicate ISM samples- 30 aliquots ✓ 3 replicate ISM samples -50 aliquots 	 Collection of 30 aliquot ISM and 50 aliquot sample to assess sample size 		
DU-5	On-Site Soils	✓ 3 replicate ISM samples	 Determine representative metal concentrations across DU s 		
DU-6	Background Soil	 ✓ 3 replicate ISM samples ✓ 16 grab samples (prev. consultant) 	 ✓ Develop Site Background ✓ Compare with previous background calculation 		

How we go about it

- ISM takes a bit more up front planning
 - Laying out the DUs
 - Gridding, staking
 - Soil density testing
- More time in field
 - Each sample includes 30 aliquots (1 Kg)
 - 3 replicate samples per DU 90 increments total per DU
 - Field sieving (homogenize the soil sample)

Setting up the Grid

 Pin flags at center of each cell

 Red and green tape represent the cell boundary.

Selected ISM Sample Tool

Sampling Methodology

Waste vs. Undisturbed Soil

Grab Samples - Diverse Soils at DU-3

Selecting the laboratory

- Not as easy as you think
- Best if they've done ISM sample analysis in the past
 - Sample size is larger
 - Grinding / sieving may be necessary
 - Sub-sampling involved
 - Additional laboratory prep costs
- Don't surprise a lab with unexpected ISM samples everyone loses

Sample Prep

- 1-2 Kg Sample
 - Sieved
 - Mixed
 - Flattened
 - Quartered
 - 30 lab sub-samples

Looking at the data

- Individual DUs
- 30 vs. 50 increment (DU-4)
- 30 increment (DU-3) vs. 30 grab samples
- 30 increment Background (DU-6) vs. 16 background grab samples

Individual DUs

- Comparison based on relative percent difference (RPD):
- $RPD(\%) = \frac{|Result1 Result2|}{(Result1 + Result2)/2} \times 100\%$
- Keeping the test method in mind, we want an RPD <25%

With the exception of the COCs, Pb and Sb, pretty good results

Background ISM vs. Grab samples

- Using the previously collected data, an upper confidence level (UCL₉₅) was calculated and compared to ISM results
- ISM concentrations higher than the UCL₉₅ values

ISM did a better job addressing variance than grab samples 16 samples

30 increments vs. 50 increments

- Compared RPDs for both data sets
- RPDs for 30 increments comparable with 50 increments
- No benefit from the additional samples

30 Grab Samples vs ISM

- Straight average of 30 grab samples compared to ISM (30 increments).
- The arithmetic average of grab samples improves as the number of grab samples increases.

Approximately 30 grab samples or more would be needed to characterize DU-3

Grab Samples

- Don't address site heterogeneity
- Are not cheaper if you collect enough to be statistically representative
- Do not adequately define site risks

ISM vs Grab Samples per DU

Stage	Activities	ISM (n=90)	Grab (n=30)	Grab (n=15)	Grab
Mobilization	Sample Prep Equipment Site Visit	\$190	\$62	\$36	\$3
Field	Surveying Sampling Labeling	\$157	\$328	\$146	\$10
Laboratory	Sample Prep Sample Analysis QC Samples	\$825	\$5,155	\$2,635	\$341
	Total	\$1,173	\$5,055	\$2,817	\$354

Cost Evaluation

- Labor costs higher for ISM sampling
- Labor costs converge as the number of grab samples increases.
- The true costs savings lie in the lab costs, where ISM is significantly less expensive than multiple grab samples

Conclusions

- 30 increment ISM samples appear to be sufficient for adequately determining concentrations within a DU at the Site when comparing ISM samples, an equal number of grab samples, and a smaller background data set.
- ISM results were reproducible and eliminate site heterogeneity as an issue in decision-making
- For the cost of 3 ISM samples per DU, defensible data can be collected

