
Appendix B. Statistical Simulation Studies
B.1 INTRODUCTION

This section presents additional details about the simulation studies used to evaluate the performance of alternative ISM
sampling strategies applied to DUs with a range of heterogeneities. Monte Carlo methods were used to collect hypothetical
incremental samples following various spatial sampling protocols. The following factors were varied:

number of increments
range of variability
number of replicates
spatial patterns
sampling methods
methods of accounting for compositional and distributional heterogeneities
sampling patterns
choice of UCL calculation method

The following performance metrics were used to evaluate the influence of these factors on ISM results:

coverage of UCL (absolute and relative bias in the estimate of the population mean)
absolute and/or RPD between the UCL and true mean (SD of relative bias in the population mean)
RSD of replicate means

The main advantage of simulations is that population parameters are known. Therefore, alternative sampling approaches
and calculation methods can be explored for a wide range of scenarios. With each simulation, the same sampling method
and/or calculations are performed many times, as if a hypothetical field crew repeated the sampling effort over and over.
Because each sampling event involves random sampling from the population, no two hypothetical events yield identical
results. However, by repeating the exercise many times, we generate a distribution of results from which we can evaluate
the various performance metrics noted above.
Note that not every performance metric is captured in every simulation, in part because the simulations use different
approaches to represent bulk material heterogeneity in a DU. Summary tables and discussions of each simulation clarify
what metrics were evaluated and how this information can be used to guide the selection of ISM sampling protocols. None of
the simulations attempt to explicitly define all seven sources of error in estimates of the mean associated with bulk material
sampling (see Section 2.6). The simulations focus on representing the compositional and distributional heterogeneities (CH
and DH) that can be attributed to FE and GSE.
Simulations were conducted with defined distributions (statistical or spatial) to represent the variability in sample value
results that may be expected, given the combined effect of these errors. Simulations allow for the evaluation of different
spatial sampling patterns that cannot be evaluated empirically because the true population parameters (such as population
mean) are typically unknown. Naming conventions applied to each simulation experiment include a prefix PD for simulations
with probability distributions and M for simulations with maps. The PD simulation approach involved randomly sampling from
a two-parameter lognormal PD with a specified mean and variance. The ratio of the population parameters (SD divided by
the mean), also known as the CV, provides a measure of variability that facilitates comparisons of results across a wide
range of conditions. The M approach involved the use of maps (2D surfaces) to sample from alternative spatial distributions
of soil contamination (M). Each set of maps has unique implementations that provide the ability to demonstrate a range of
different DU conditions. The method to simulate the soil data for each set of maps follows:

M-1 is based on a real dataset of more than 200 observations. The sample results were interpolated with inverse
distance weighting techniques to yield a completely defined 2D surface of concentrations (see Section B.3).
M-2 maps are based on real DU data composed of bulk materials. The patterns and concentration values are
established from extensive discrete data (100 increments per DU) gathered as a part of multiple ESTCP projects
led by Jenkins and Hewitt (Jenkins et al. 2004, Hewitt et al. 2005)  (Jenkins et al. 2004, Hewitt et al. 2005); and
Qiao, Pulsipher, and Hathaway (Qiao et al. 2010) (Qiao et al. 2010) document the specific details for how the
discrete data were used to establish the completely defined 2D surface of increment values shown Section B.4.



Collectively, the simulation studies presented in this appendix provide a preliminary set of results intended to facilitate the
development of ISM sampling designs and corresponding statistical analyses. More detail and underlying assumptions of the
different simulation approaches are identified below.
Simulations presented in this appendix refer to different scales of heterogeneity as being “small” and “large,” and are not
intended to imply a precise dimension for a DU in terms of acres. Instead, the terms are relative to the size of the DU. Small
scale refers to the immediate vicinity of the incremental sample, whereas large scale refers to the overall spatial extent of
the DU.

B.1.1 Summary of Simulation Findings
Table B-1 summarizes the observations and conclusions from the various statistical simulations that were conducted.
Table B-1. Summary of findings from simulation experiments using PDs (PD) and maps (M).
Source: 2012, ITRC ISM Team.

Effects of the Number of Increments and Replicates on the Estimate of the Mean

1 Increasing the number of increments and/or replicates reduces variability in the estimate of the mean.

2
Variability in the grand mean (the mean of the replicate incremental sampling estimates of the mean) is a function of
the total number of increments collected (increments x replicates).

3

DUs with high heterogeneous contaminant concentrations have greater variability in the estimate of the mean and
greater potential for errors in terms of both frequency and magnitude. Underestimates of the mean would be
expected to occur more frequently than overestimates for heterogeneous sites with right-skewed contaminant
concentration distributions. With equal numbers of samples (that is, individual discrete samples versus ISM
replicates), the magnitude of error in estimating the mean would be expected to be lower using ISM.

4

The coverage of the 95% UCL depends on the total sample size (increments × replicates). For the typical number of
increments of an ISM sampling design (30 to 100), increasing the number of ISM replicates above three provides
marginal return in terms of improving coverage, but increasing the number of replicates decreases (or improves) the
RPD, meaning that it will produce estimates of the 95% UCL closer to the DU mean.

5
Simulations produced varying results in terms of improvement in coverage by increasing the number of increments.
As with increasing replicates, increasing the number of increments decreases (i.e., improves) the RPD.

6

Coverage provided by the two UCL calculation methods depends on the degree of variability of the contaminant
distribution within the DU. For DUs with medium or high heterogeneity, the Student’s-t method may not provide
specified coverage. For DUs with high heterogeneity, the Chebyshev method may not provide specified coverage as
well.

7
The Chebyshev method always provides a higher 95% UCL than the Student’s-t method for a given set of ISM data
with r > 2. When both methods provide specified coverage, the Chebyshev consistently yielded a higher RPD.

Effects of Sampling Pattern

8
If the site is relatively homogeneous, all three field sampling patterns yield unbiased mean estimates, but the
magnitude of error in the mean may be higher with simple random sampling compared to systematic random
sampling. All sampling patterns yield similar coverages.

9

While all three sampling options are statistically defensible, collecting increments within the DU using simple random
sampling is most likely to generate an unbiased estimate of the mean and variance according to statistical theory.
From a practical standpoint, true random sampling is probably the most difficult to implement in the field and may
leave large parts of the DU “uncovered,” or without any increment sample locations. It should be noted that random
does not mean wherever the sampling team feels like taking a sample, and a formal approach (typically based on a
random number generator) to determining the random sample locations must be used.



10

Systematic random sampling can avoid the appearance that areas are not adequately represented in ISM samples
and is relatively straightforward to implement in the field. Theoretically, it is inferior to simple random sampling for
obtaining unbiased samples and can be more prone to producing errors in estimating the true mean, especially if the
contamination is distributed in a systematic way. Random sampling within a grid is, in a sense, a compromise
approach, with elements of both simple random and systematic sampling.

Subdividing the DU

11 Sampling designs with this method yield unbiased estimates of the mean.

12

The principal advantage of subdividing the DU is that some information on heterogeneity in contaminant
concentrations across the DU is obtained. If the DU fails the decision criterion (that is, it has a mean or 95% UCL
concentration above a soil action limit), information will be available to indicate whether the problem exists across
the DU or is confined to guide redesignation of the DU and resampling to further delineate areas of elevated
concentrations.

13

Partitioned DU SE estimates are larger than those from replicate data if the site is not homogeneous. Hence, 95%
UCL estimates from a subdivided DU will be as high or higher than those obtained from replicate measurements
collected across the DU. The higher 95% UCLs improve coverage (generally attain 95% UCL) and increase the RPD.
These increases occur if unknown spatial contaminant patterns are correlated with the partitions. In most cases, the
Student’s-t method provides adequate coverage.

RSD

14
Datasets with a high RSD are more likely to achieve specified coverage for 95% UCL than datasets with low RSD.
This tendency is explained by the greater variability among replicates leading to higher 95% UCL values, resulting in
better coverage.

15
A low RSD does not ensure specified coverage by the 95% UCL or low bias in a single estimate of the mean. The
opposite is, in fact, the case. For situations in which the UCL or one replicate mean is less than the true mean, the
underestimate increases as RSD decreases.

The simulation findings presented in this appendix do not represent the totality of simulation exercises conducted as part of
this project. It is anticipated that additional research may be needed to further investigate the performance of alternative
ISM sample designs.
B.2 Probability Distributions (PDs)
A series of Monte Carlo simulations was run using PDs with different CVs. Table B-2 summarizes distribution variability
(based on CV) and results for selected sampling designs and performance metrics (both Student’s-t and Chebyshev UCLs).
Each scenario can be thought of as a special case of the simulations with maps (M-1 and M-2), presented later in this
appendix. With sampling from PDs, each increment is an independent random sample obtained from the same defined
distribution (that is, they are identically distributed), which is analogous to using simple random sampling for increment
collection for an actual site. The DU is assumed to consist of a single population of lognormally distributed concentrations. It
is important to note that, while this approach is useful for conveying important concepts about ISM, sampling from a PD is an
oversimplification for the following reasons:

There is no attempt to quantify the relative contributions of different sources of heterogeneity or errors
introduced in both the field and laboratory. The variance is viewed as a lumping term that represents the
variability in concentrations in soil if the site were divided into samples of some mass. In practice, the expected
error in the estimate of the mean depends in part on the mass of soil collected with each increment (see
discussion of Gy’s sampling principles in Section 2.6). Therefore, it is convenient to think of the population as
having a fixed mean concentration but also a variance contingent on the sample mass. The simulations with
defined distributions do not explore the effect of sample mass  on performance metrics. Instead, it is assumed
that the specified variance simply reflects the collective sources of heterogeneity.
The defined populations used in the simulations are not described as representing a DU of a specific size. At



many sites, it is common for concentrations to exhibit spatial patterns, including subareas of elevated
concentrations and overlapping sources (that is, mixtures). This may be true even for very small DUs where
concentrations from samples collected within a 1-ft radius differ by more than an order of magnitude. Most of
the simulations do not explicitly model these conditions but instead presume that the overall population for the
DU can be approximated by a lognormal distribution, regardless of any spatial arrangement of the contaminant
mass.
Only lognormal PDs are defined, and alternative positively skewed PDs were not explored. In general, because
lognormal distributions give greater weight to results in the upper tail than alternative choices (for example,
gamma or Weibull distribution), the SE for the mean and the corresponding UCLs tends be higher than that of
comparable distributions with the same population mean and variance.

Table B-2. Summary of simulation results using lognormal distributions (* %itl = percentile).
Source: 2012, ITRC ISM Team.
95% UCL >= true mean [overestimate of mean]

Statistic*

Chebyshev 95% UCL Student’s-t 95% UCL

2
reps

3
reps

5
reps

7
reps

2
reps

3
reps

5
reps

7
reps

m=30, CV=1

count of
simulations

4,571 4,835 4,956 4,981 4,693 4,664 4,689  

95% UCL
coverage

91% 97% 99% 100% 94% 93% 94% 94%

mean RPD 27% 22% 18% 16% 37% 16% 10% 8%

5th %ile
RPD

3% 4% 5% 5% 4% 2% 1% 1%

50th %ile
RPD

22% 21% 17% 15% 31% 14% 9% 7%

95th %ile
RPD

65% 48% 34% 28% 91% 34% 20% 15%

 m=30, CV=4

count of
simulations

4,346 4,690 4,852 4,909 4,519 4,430 4,333 4,351

95% UCL
coverage

87% 94% 97% 98% 90% 89% 87% 87%

mean RPD 93% 80% 63% 55% 129% 57% 36% 28%

5th %ile
RPD

6% 8% 9% 10% 9% 4% 3% 2%

50th %ile
RPD

65% 59% 50% 44% 90% 41% 27% 22%



95th %ile
RPD

272% 214% 155% 129% 374% 157% 92% 73%

 m=30, CV=7

count of
simulations

4,171 4,532 4,740 4,820 4,414 4,187 4,101 4,137

95% UCL
coverage

83% 91% 95% 96% 88% 84% 82% 83%

mean RPD 140% 117% 94% 83% 189% 86% 55% 45%

5th %ile
RPD

8% 8% 9% 11% 11% 5% 4% 3%

50th %ile
RPD

82% 73% 65% 59% 111% 54% 36% 30%

95th %ile
RPD

457% 358% 271% 227% 609% 272% 164% 133%

 m=100, CV=1

count of
simulations

4,604 4,827 4,946 4,979 4,720 4,690 4,687 4,669

95% UCL
coverage

92% 97% 99% 100% 94% 94% 94% 93%

mean RPD 27% 23% 18% 16% 38% 16% 10% 8%

5th %ile
RPD

3% 5% 5% 5% 4% 3% 2% 1%

50th %ile
RPD

22% 21% 18% 15% 32% 14% 9% 7%

95th %ile
RPD

66% 49% 34% 28% 93% 35% 20% 15%

 m=100, CV=4

count of
simulations

4,358 4,674 4,858 4,926 4,547 4,435 4,375 4,395

95% UCL
coverage

87% 93% 97% 99% 91% 89% 88% 88%

mean RPD 95% 79% 64% 55% 130% 57% 36% 28%

5th %ile
RPD

6% 9% 10% 10% 9% 5% 3% 2%



50th %ile
RPD

65% 59% 51% 45% 89% 41% 27% 22%

95th %ile
RPD

280% 211% 157% 129% 380% 155% 95% 73%

 m=100, CV=7

count of
simulations

4,115 4,509 4,739 4,839 4,362 4,186 4,092 4,119

95% UCL
coverage

82% 90% 95% 97% 87% 84% 82% 82%

mean RPD 135% 114% 93% 80% 183% 84% 54% 43%

5th %ile
RPD

7% 8% 9% 9% 10% 5% 3% 3%

50th %ile
RPD

82% 74% 64% 58% 111% 53% 36% 30%

95th %ile
RPD

417% 321% 251% 210% 557% 240% 156% 122%

Chebyshev 95% UCL Student’s-t 95% UCL

2 reps
3
reps

5
reps

7
reps

2
reps

3
reps

5
reps

7
reps

m=30, CV=1

4,678429 165 44 19 307 336 311 322

91% 97% 99% 100% 94% 93% 94% 94%

-4% -3% -2% -1% -4% -3% -2% -2%

-11% -7% -7% -3% -11% -8% -6% -5%

-4% -2% -1% -1% -4% -2% -2% -1%

0% 0% 0% 0% 0% 0% 0% 0%

m=30, CV=4

654 310 148 91 481 570 667 649

87% 94% 97% 98% 90% 89% 87% 87%



-13% -10% -7% -6% -13% -10% -8% -6%

-30% -23% -18% -15% -30% -25% -19% -17%

-12% -8% -6% -5% -11% -8% -6% -5%

-1% -1% 0% 0% -1% -1% -1% -1%

m=30, CV=7

829 468 260 180 586 813 899 863

83% 91% 95% 96% 88% 84% 82% 83%

-18% -13% -10% -8% -18% -14% -11% -9%

-39% -31% -24% -21% -41% -32% -28% -23%

-16% -11% -8% -6% -16% -12% -9% -8%

-2% -1% 0% -1% -1% -1% -1% -1%

m=100, CV=1

396 173 54 21 280 310 313 331

92% 97% 99% 100% 94% 94% 94% 93%

-4% -3% -2% -1% -5% -3% -2% -2%

-12% -8% -5% -3% -12% -9% -6% -5%

-3% -2% -2% -1% -4% -3% -2% -1%

0% 0% 0% 0% 0% 0% 0% 0%

m=100, CV=4

642 326 142 74 453 565 625 605

87% 93% 97% 99% 91% 89% 88% 88%

-13% -10% -6% -6% -13% -10% -7% -6%



-30% -23% -18% -18% -31% -25% -18% -16%

-11% -8% -5% -5% -12% -9% -6% -5%

-1% -1% 0% 0% -1% -1% 0% 0%

m=100, CV=7

885 491 261 161 638 814 908 881

82% 90% 95% 97% 87% 84% 82% 82%

-17% -13% -9% -8% -17% -14% -11% -9%

-39% -29% -22% -20% -38% -31% -26% -23%

-15% -11% -8% -6% -15% -12% -9% -8%

-1% -1% -1% -1% -1% -1% -1% -1%

B.2.1 Methods
Monte Carlo analysis was used to repeatedly apply a specified sampling design (number of increments and ISM samples) to
a DU scenario. Typically, between 5,000 and 30,000 trials were used, with the large number of trials expected to yield
relatively stable (that is, reproducible) results. Each trial represents a complete sampling event (n increments and r
replicates) and yields an estimate of the population mean, the SE of the mean, and the 95% UCL. Collectively, the results
yield a distribution of 95% UCLs that can be used to calculate performance metrics – for example, ideally, the sampling
method and UCL calculation yield a PD of 95% UCLs with a 5th percentile equal to (or greater than) the true population
mean. This would mean that we can expect the sampling design applied to this type of population to achieve the desired
coverage (or percentage of exceedances of the true mean) of 95%. Table B-2 provides examples of simulation experiments
with coverages that vary from approximately 80 to 100%.
Multiple ISM samples (or replicates) must be collected to calculate the SE and UCL. The expected small sample sizes (three
to seven replicates) for most implementations of ISM preclude the use of bootstrap resampling techniques to calculate a
UCL, so simulations were performed using only the Student’s-t and Cheybshev UCL methods, which are based on sample
size, sample mean, and variance. Because the distribution of sample means tends to exhibit less skew than the population
due to the CLT, the performance of the Student’s-t UCL can vary, but Student’s-t can be expected to yield the most reliable
performance metrics for populations with a low (≤1) CV. By contrast, Chebyshev generally yields higher UCLs with higher
coverage but also higher RPDs. RPD = [(UCL – μ)/100] ´ 100%, where μ denotes the true DU (population) mean.
Generally, sampling designs were varied between 15 and 100 increments and between two and seven replicate ISM
samples. The mean of the distribution represents the population mean and is used to calculate the bias and RPD metrics.
The number of replicates is used to represent the degrees of freedom in UCL calculations using ISM.

B.2.2. Results
Figure B-1 illustrates how the coverage of the 95% UCL varies for the Student’s-t and Chebyshev UCL equations for a range
of sampling designs applied to lognormal distributions with a range of variability. The table below the graph gives the
coverage statistics as well as the average RPD (based on the full distribution of UCLs calculated).

https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_1


Figure B-1. Examples of simulation results using lognormal PDs with CV equal to two and four, increments of
15 and 30, replicates ranging from two to seven, and two 95% UCL calculation methods (Cheby = Chebyshev;
t-UCL = Student’s-t).
Source: 2012, ITRC ISM Team.

These examples are useful for illustrating the following general patterns that emerge from the simulation experiments with
lognormal distributions:

The Chebyshev UCL generally yields higher coverage than the Student’s-t UCL, with the exception of scenarios in



which two replicates (r = 2) are selected. The upper critical value of the Student’s-t distribution (that is, the t-
value) varies with the degrees of freedom (df = r – 1), as noted below. For r = 2, the t-value is 6.3, which
introduces an additional factor of two or more to the calculation of the 95% UCL compared to sampling designs
with three or more replicates.

Table B-3. 95th Percentiles of Student’s t Distribution
Source: 2020, ITRC ISM Update Team.

Replicates df = r – 1 t-value for alpha = 0.05

2 1 6.3

3 2 2.9

4 3 2.4

5 4 2.1

6 5 2.0

7 6 1.9

The coverage of the Chebyshev UCL generally increases with increasing sample sizes (increments and
replicates) but with diminishing returns. The table below lists examples of combination of replicates and
increments that can be expected to yield approximately 95% coverage. The coverage of the Student’s-t UCL
generally does not achieve 95% and does not increase with increasing samples sizes (increments and replicates)
within a practical range.

Table B-4. Coverage of the Chebyshev UCL
Source: 2020, ITRC ISM Update Team.

CV Increments Replicates Coverage CV Increments Replicates Coverage

1

15 3 96%

4

30 4 94%

30 3 97% 50 4 95%

2

15 3 93% 100 3 93%

15 4 95% 100 4 96%

30 3 94%

7

30 5 95%

30 4 96% 100 5 95%

3

15 5 95%  

30 4 95%

50 4 96%

100 3 95%



The RPD between the 95% UCL and the population mean is generally greater for Chebyshev than Student’s-t,
particularly for trials in which the 95% UCL actually exceeds the population mean. Therefore, the trade-off with
the Chebyshev UCL is that it achieves more reliable coverage but also higher UCLs.
The simulations with lognormal distributions yield unbiased estimates of the mean.

B.3 SPATIAL AUTOCORRELATION MAPS (M-1)
For most sites, contaminants in soil exhibit some degree of spatial relationship, meaning that variance in the concentration
often reduces as the distance between sample locations decreases. It is well established that strong spatial relationships can
reduce the effective sample size of a dataset because each sample provides some redundant information (Cressie 1993). In
statistical terms, this redundancy violates the assumption that observations are independent. ISM CIs generated from
spatially related data can be too narrow, resulting in a higher frequency of decision errors. Spatial relationships may also
introduce bias in estimates of the mean and variance, depending on the sampling protocol. Bias can be reduced by using a
truly random sampling strategy (for example, simple random sampling). The issue of spatial relationships applies to discrete
as well as ISM sampling.

B.3.1. Methods
Simulations were run to evaluate the effect of spatial autocorrelation on the performance of ISM. Figure B-2 shows a map
generated from a real dataset of more than 200 observations. The sample results were interpolated with inverse distance
weighting techniques to yield a 2D surface of concentrations. Such spatial smoothing is likely to underestimate the
distributional heterogeneity in concentrations that exists at most sites, so the results with ISM may underestimate the
variance. Four ISM sampling protocols were applied to this map, assuming the map represents a single DU:

systematic grid with a random start location (no division of the DU)
systematic grid with a random start location (division of DU into quadrants)
simple random sample (no division of the DU)
simple random sample (division of the DU into quadrants)

For the scenario in which the site is divided into quadrants, each quadrant was sampled with the specified number of
replicates, which means simulations with quadrants represent an overall fourfold increase in the sampling effort. Alternative
evaluations of the quadrant scenario were evaluated with different maps to illustrate the performance metrics for quadrants
in which a single ISM sample is collected from each quadrant, yielding a total sample size of r = 4.

B.3.2. Results
Table B-3 summarizes the simulation results with 1,000 Monte Carlo trials using 30 increments and three, five, and seven
replicates. The distribution is only mildly skewed (CV = 0.7), and the autocorrelation is high (Moran’s I z-score = 3.8). The
following observations are noted:

The spatial autocorrelation does not affect the coverage of either the simple random sampling or systematic grid
sampling. With 30 increments and three replicates, Chebyshev yields 96 to 97% coverage, whereas Student’s-t
yields 94% coverage.
As noted with the simulations using lognormal distributions, increasing the number of replicates results in a
higher coverage for the Chebyshev UCL but generally no improvement in the Student’s-t UCL.
The average RPD for the 95% UCL is lower by approximately a factor of two with systematic grid sampling, but
introducing spatial autocorrelation tends to result in an improvement in this metric, most likely because
autocorrelation affects the correlation between the sample mean and variance. For non-normal distributions,
simple random sampling yields a positive correlation between the sample mean and sample variance. When
systematic grid sampling is applied to a scenario with high spatial autocorrelation, it is more likely that
neighboring samples share similar values, thereby reducing the sample variance.

https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_2


Figure B-2. Example of a map with high spatial autocorrelation (Moran’s I z-score = 3.8).
Source: Kelly Black, Neptune and Company, Inc., 2012. Used with permission.

Throughout the entire DU (all grid cells combined), the population mean is 8,564 and SD is 6,507 (CV = 0.7).

Table B-5. Summary of simulation results for a site with high spatial autocorrelation (see map in Figure B-2).
Source: Kelly Black, Neptune and Company, Inc., 2012. Used with permission.

https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_2


Both sampling protocols yield relatively unbiased estimates in the mean, which is an expected result for simple
random sampling but not necessarily for systematic grid sampling. However, even for a site with high spatial
autocorrelation, the bias is negligible when the population has a very low CV.
Splitting the DU into quadrants results in lower RPDs, mainly reflecting the increase in the total number of
replicates.

B.4. MAPS OF RDX AND HMX (M-2A AND M2-B)
Map scenarios M-2A and M-2B represent different spatial structures with both small- and large-scale distributional
heterogeneities. These examples are based on a more extensive analysis of ISM conducted for USACE and discussed in a
separate report (Qiao et al. 2010). The data are based on results of site investigations involving measurements of
concentrations of RDX and HMX in (discrete) bulk surface soil samples. The two histograms in Figure B-3 show each of these
sites in 2D histograms with a square-root-transformed count axis to improve the visualization of the tail values. With a
standard count axis shown, these distributions would look even more extreme. Their respective means are marked with a
dotted green vertical line.
The plots on the left represent a distribution of HMX (mg/kg), and the plots on the right site represent a distribution of RDX
(mg/kg) from which increments will be collected. Obstructions such as large rocks and paved roads are excluded to simplify

https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_3


the automation of ISM sampling as well as to simplify the calculation of the population parameter (true mean) from which
performance metrics are determined.

Figure B-3. Spatial distributions and histograms of concentrations for two simulated sites.
Source: J. Hathaway for ACOE, 2012. Used with permission.

B.4.1 Descriptions of DUs
Qiao, Pulsipher, and Hathaway (Qiao et al. 2010) provide details about how the simulated sites were created and values
were applied to grid cells representing the DUs. Briefly, each of the 10,000 discrete increment concentration values shown
on each site in Figure B-3 are derived from real sites composed of bulk materials. The patterns and concentration values are
from extensive discrete data (increments) gathered as a part of multiple ESTCP projects led by Jenkins and Hewitt (Jenkins et
al. 2004). Each grid value (increment) in Figure B-3 represents the agglomeration of the bulk material from that area with
reported values of constituent levels in units of mg per kg (or parts per million). Thus, as with the simulations with lognormal
distributions (PD-1), FE and GSE were not explicitly used in simulating these sites. These errors are implicitly accounted for
in the modeled small-scale (local) spatial variability.

B.4.1.1. HMX DU (M2-A)

The HMX concentrations (mg/kg) shown in Figure B-3 (map and histogram on left) depict a 10-m × 10-m DU with moderate
heterogeneity. This DU has some spatial patterns, but they are relatively dispersed, and the distribution of values is
relatively tight (CV = 1.1). Population parameters include a (true) mean of 0.13, an SD of 0.15, and a maximum of
approximately 2.3 mg/kg.

https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_3
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_3
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_3


B.4.1.2. RDX DU (M2-B)

The RDX concentrations (mg/kg) shown in Figure B-3 (map and histogram on the right) depict a 10-m × 10-m DU with more
extreme heterogeneity. The map shows one area with extremely high concentrations (bottom middle) and a second area
with high concentrations (middle right side) while the rest of the DU has orders of magnitude lower concentrations. This DU
represents a site with relatively strong small- and large-scale distributional heterogeneity with a CV of approximately 4.5 (SD
= 319 mg/kg; mean = 71.4 mg/kg).

B.4.2 ISM sampling patterns
Figures B-4 to B-7 show the 64 different ISM patterns that are evaluated and summarized in Section B.4.4. For all four
figures, each row of plots represents a different number of replicates gathered from the DU (two, three, four, and five), and
each column of plots identifies a different number of increments per replicate (16, 30, 49, and 100). Figure B-4 and Figure
B-5 show the standard ISM procedure with replicate ISMs over the entire DU for systematic and random grid sampling,
respectively. Figure B-6 and Figure B-7 represent the grouped ISM methods for systematic and random grid sampling,
respectively. In particular, they show the general structure for each of the evaluated patterns but represent only an example
of one random selection for each pattern. Figure B-8 shows the random and systematic discrete sampling types that were
evaluated using sample sizes of 9, 16, 30, and 100. Once again, these examples show the general structure for each of the
evaluated sampling types and only represent one random selection for each pattern.

Figure  B-4.  Standard  incremental  sampling  using  a  systematic  grid  sampling  approach.  Each  column
represents a differing number of increments per ISM, and each row depicts the differing number of ISMs that

https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_3
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_4
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_7
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_4
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_5
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_5
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_6
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_7
https://ism-2.itrcweb.org/statistical-simulation-studies/#figB_8


were gathered.
Source: J. Hathaway for ACOE, 2012. Used with permission.

Figure B-5. Standard incremental sampling using a random grid sampling approach. Each column represents a
differing  number  of  increments  per  ISM,  and  each  row  depicts  the  differing  number  of  ISMs  that  were
gathered.
Source: J. Hathaway for ACOE, 2012. Used with permission.



Figure B-6. Grouped incremental sampling using a systematic grid sampling approach. Each column represents
a  differing  number  of  increments  per  ISM,  and  each  row  depicts  the  differing  number  of  ISMs  that  were
gathered.
Source: J. Hathaway for ACOE, 2012. Used with permission.



Figure B-7. Grouped incremental sampling using a random grid sampling approach. Each column represents a
differing  number  of  increments  per  ISM,  and  each  row  depicts  the  differing  number  of  ISMs  that  were
gathered.
Source: J. Hathaway for ACOE, 2012. Used with permission.



Figure B-8. Discrete sampling using a systematic grid (top row) and random grid (bottom row) sampling
approaches. Each column represents a differing number of increments or discrete samples (from left to right
9, 16, 30, and 100 samples per evaluation).
Source: J. Hathaway for ACOE, 2012. Used with permission.

B.4.3   Results using discrete sampling
Table B-4 shows a few of the 2,000 iterations from the UCL calculations based on using the mean and SE calculated from
nine systematic grid discrete samples (see upper left plot in Figure A-8) from a DU. These values represent absolute
concentrations in mg/kg, and the values from the UCL column are then compared to the true mean. A sampling design
achieves the desired statistical coverage if, for example, the UCL values underestimate the true mean in fewer than 100 of
the 2,000 iterations (that is, 5%). Figure B-9 shows a histogram of 2,000 UCL values from one simulation scenario where the
y-axis represents the percentage of 2,000 in each bin (note that the y-axis is distorted to show the low bin counts). The red
line identifies the location of the true mean. This UCL histogram shows that the coverage was only 76%, which is a
significant departure from the theoretical design of 95% UCL. The simulation results provide an example demonstrating how
one of the performance metrics (coverage of the 95% UCL) may indicate whether a particular sampling design is unlikely to
yield reliable results.
Table B-6. Example of mean and 95% UCL calculations for each iteration of a simulation.
Source: J. Hathaway for ACOE, 2012. Used with permission.

Mean UCL

0.61 0.76

0.72 0.94

1.01 1.46

0.79 1.18

  …   …

0.81 1.02
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Figure B-9. Histogram of the calculated UCL values using a simulated dataset with 2,000 iterations.
Source: J. Hathaway for ACOE, 2012. Used with permission.

For display purposes, the y-axis in Figure B-9 is in terms of percentage of 2,000 and is distorted (not evenly spaced between
ticks) to highlight the low count bins. The red line identifies the true mean of 0.776.
The discrete sampling examples were restricted to calculations using Student’s-t UCL and Chebyshev UCLs. Other methods
for UCL calculations are typically considered to attain appropriate coverage by implementing USEPA’s ProUCL or comparable
software. For sites with heavy right-tailed distributions and distributional heterogeneity, discrete sampling methods with up
to 100 samples taken are not sufficient to use a t-statistic to calculate a reliable UCL. However, the Chebyshev UCL does
provide adequate coverage for many of the DUs at multiple sample sizes. Additional discrete sampling results are discussed
in the subsequent sections.

B.4.4.  Results using ISM
The following subsections provide results for the RDX and HMX DUs. Within each simulated DU subsection, 40 sets of results
are shown using two different UCL calculation methods. Both systematic grid and random grid sampling routines for the
grouped and standard ISM patterns were used. Differences in results for these sampling routines were within the range of
simulation (stochastic) error. Figure B-10 shows an example of the equal coverage for both M2-A and M2-B using the three
different standard ISM sample selection patterns (random grid, simple random, and systematic random) for t-based 95%
UCLs. For simplicity, only the results associated with the random grid sampling routines are presented in each section.
The tables shown in each section will be separated into the three general sampling patterns: standard ISM, grouped ISM, and
discrete sampling. Each table summarizes the results from 2,000 iterations, but the first two columns are different for the
ISM and discrete summary tables. For the ISM summary tables, the first column identifies the number of ISMs sampled from
within the DU, and the second column shows the number of increments in each ISM. For the discrete summary tables, the
first column identifies whether random or systematic sampling was used, and the second column lists the number of
increments sampled from the DU that are used to calculate the mean and SD. The third and fourth columns show the UCL
coverage for the Chebyshev and t-UCL calculations. The last four columns summarize the RPD of the UCL values using the
Chebyshev and t-distribution UCL multipliers. The RPD above column for each UCL multiplier is the average relative
difference from the true mean for those UCL values that were above the true mean. The RPD below columns for each UCL
multiplier show the average relative difference from the true mean for those UCL values that were below the true mean.
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Figure B-10. A coverage plot comparing systematic grid (with random start), random grid, and simple random
sampling for the RDX DU (M2-A) and HMX DU (M2-B) when two, three, four, or five ISMs are collected from the
DU.
Source: J. Hathaway for ACOE, 2012. Used with permission.

Each subsection contains plots depicting the pertinent information from the coverage tables for an easier visualization of the
results from simulation studies. These plots show the designed UCL coverage level (dashed blue line) and the coverage
performance of each sampling pattern as a function of the number of increments (in each ISM for the ISM designs and total
for discrete designs). Each colored line represents a different sampling pattern with a separate plot for the discrete, grouped
ISM, and standard ISM. The dashed line identifies the t-UCL calculations, and the solid line identifies the Chebyshev UCL
values. Each plotted point represents the results from one line from the tables within the subsection. Coverage results based
on 2000 iterations provide estimates accurate to within approximately ±1.5% to ±2.5%.
One figure of 40 UCL histograms with consistent axes is shown in each subsection. These figures are meant to show general
distributional and coverage patterns of the calculated UCLs over all sampling patterns and may be difficult to use for
evaluating any specific one.
The displayed t-distribution UCL calculations are based on a 95% UCL using t-distribution with the df equal to 1 minus the
number of measures used to calculate the SD for each scenario. For the ISM sampling patterns, df is the number of ISM
replicates gathered from the site minus 1, and for the discrete sampling patterns, df is the number of samples gathered
minus 1. It is understood that the t-distribution is not appropriate for cases where the sample size is small and measured
values do not follow a normal distribution. This would generally be the case for the discrete sample designs with 9 and 16
samples as applied to the five simulated sites. In many instances, a different UCL method would be needed for all discrete
sample designs (16, 30, 49, and 100), and alternative UCL calculations that do not rely on normal theory should be used in
those cases. Such UCL calculations can be found in software such as ProUCL (Singh, Maichle, and Armbya 2007) and VSP
(Dowson et al. 2007) for use in environmental studies. There are a variety of choices depending on site-specific needs.
For the proposed ISM sampling methods, the t-distribution may not provide adequate coverage, and with the limited number
of available data values, it is difficult to use many of the tools in ProUCL for alternative UCL calculations. Thus, a more
conservative Chebyshev multiplier is used for attaining an improved coverage percentage; the UCL coverage plots and
tables also show the Chebyshev 95% UCL calculations. The SE is multiplied by a prespecified value and added to the mean
to identify the UCL. For the t-distribution, this value is a function of the number of values used to estimate the mean and SE.
The Chebyshev multiplier is 1/sqrt (1 – 0.95) for a 95% UCL regardless of the sample size used. This generally conservative
multiplier of 4.472 will shift the coverage statistics up for all sampling patterns except for the two ISM designs. A t-
distribution with 1 df results in a multiplier of 6.313. The most drastic effects of the Chebyshev multiplier are seen with the
discrete designs, as their coverage and bias increase the most.



B.4.4.1 Results for RDX (M2-A)

For the RDX (10-m × 10-m DU) simulations, Tables B-5 through B-7 show the summaries from the evaluated simulations.
The coverage, bias, number of increments, and number of ISMs are used to create the coverage plot shown in Figure B-11.
Figure B-12 shows the panel of 95% t-UCL histograms for all 40 sampling patterns evaluated on the RDX 10-m × 10-m DU.
This site had the strongest small- and large-scale distributional heterogeneity of the two DUs evaluated with a CV of 4.47,
with a mean of 71.36 and an SD of 319.1. The coverage results for the standard ISM perform reasonably well for the ISM
designs of 100 increments per ISM. The grouped ISM patterns were above the designed criteria of 95% for all but the ISM
composed of 16 increments. For this DU, the grouped ISMs are the only patterns that consistently met or exceeded the
designed 95% coverage but did have more bias in the mean than the standard ISM or discrete methods.
Table B-7. Discrete summary for RDX DU (M2-A).
Source: J. Hathaway for ACOE, 2012. Used with permission.

Grid
Sampling
Type

Number of
Increments

Chebyshev
95% UCL
Coverage

95% t-UCL
Coverage

Chebyshev
RPD above
Mean

t RPD
above
Mean

Chebyshev
RPD below
Mean

t RPD
below
Mean

Random 9 67.20 55.80 596.67 334.23 57.02 61.88

Systematic 9 67.65 54.90 576.75 328.07 56.18 60.07

Random 16 79.25 64.50 431.13 229.60 45.61 49.98

Systematic 16 81.80 65.75 425.83 229.09 47.11 48.37

Random 30 84.60 67.75 292.69 145.30 34.17 40.99

Systematic 30 85.80 67.95 304.20 154.45 39.45 40.97

Random 100 97.50 84.50 182.32 81.15 13.70 20.02

Systematic 100 97.95 86.80 186.52 81.02 12.22 15.26

Table B-8. Standard ISM summary for RDX DU (M2-A).
Source: J. Hathaway for ACOE, 2012. Used with permission.

Number
of ISs

Number of
Increments

Chebyshev
95% UCL
Coverage

95% t-UCL
Coverage

Chebyshev
RPD above
Mean

t RPD
above
Mean

Chebyshev
RPD below
Mean

t RPD
below
Mean

2 16 82.95 86.35 279.99 373.67 37.86 36.14

3 16 88.15 81.95 219.34 157.50 27.98 30.40

4 16 92.35 82.25 199.60 122.60 24.52 26.07

5 16 94.00 82.45 177.73 99.96 20.89 22.80

2 30 82.35 86.70 192.10 257.12 31.80 31.52
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3 30 90.50 83.90 150.90 105.86 23.31 24.57

4 30 93.65 83.95 135.61 78.51 20.59 21.45

5 30 95.85 82.95 119.96 64.14 16.60 17.27

2 49 87.85 90.55 147.00 200.34 25.16 23.89

3 49 93.20 88.30 128.19 89.26 16.46 17.75

4 49 96.45 88.40 111.83 64.84 15.40 15.31

5 49 96.85 88.90 101.49 53.30 14.40 15.13

2 100 88.10 91.10 100.46 136.07 16.05 16.26

3 100 94.80 90.80 85.38 59.17 9.62 11.27

4 100 97.60 92.70 76.04 43.07 7.87 10.39

5 100 98.30 91.70 67.41 35.27 8.17 7.79

Table B-9. Grouped ISM summary for RDX DU (M2-A).
Source: J. Hathaway for ACOE, 2012. Used with permission.

Number
of ISMs

Number of
Increments

Chebyshev
95% UCL
Coverage

95% t-UCL
Coverage

Chebyshev
RPD above
Mean

t RPD
above
Mean

Chebyshev
RPD below
Mean

t RPD
below
Mean

2 16 90.55 93.00 408.76 560.08 41.12 42.40

3 16 94.90 90.75 380.21 261.11 31.43 31.17

4 16 95.75 88.45 277.75 159.09 21.51 25.65

5 16 97.95 92.50 297.41 152.63 17.43 23.42

2 30 96.05 97.85 372.63 516.93 29.51 34.85

3 30 98.90 96.15 334.96 223.28 21.55 19.55

4 30 99.35 95.65 239.38 128.93 13.45 18.42

5 30 99.80 96.20 267.77 131.54 13.41 14.40



2 49 99.75 99.95 375.05 528.31 8.90 3.84

3 49 100.00 100.00 342.29 222.02   

4 49 99.75 98.55 240.99 127.20 7.37 17.19

5 49 100.00 97.50 261.90 124.83  12.04

2 100 100.00 100.00 374.57 528.80   

3 100 100.00 100.00 336.40 217.67   

4 100 100.00 100.00 238.50 125.84   

5 100 100.00 100.00 266.15 126.93   

Figure B-11. Plot of the coverage statistics for each of the simulated sampling patterns as applied to the RDX
DU. Note that the different sampling patterns are displayed within the plot as well as UCL type.
Source: J. Hathaway for ACOE, 2012. Used with permission.



Figure B-12. Panel of histograms of the distribution of t-UCL values for the 2,000 simulations. Note that the
red  line  identifies  the  true  mean.  The  y-axis  identifies  the  percent  of  2,000  simulations  in  each  bin  and  is
distorted to show the percentage in the low count bins.
Source: J. Hathaway for ACOE, 2012. Used with permission.

Figure B-13 shows the distribution histograms for the 2,000 estimated means from the grouped and standard sampling
patterns. This plot is representative of the other simulated sites and shows a few important highlights. As more increments
are included in each ISM, the distribution of means becomes more normally distributed. Both the grouped and standard ISM
designs provide unbiased estimates of the mean (71.36) and have virtually identical distributions.
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Figure B-13. A comparison of the distribution of means for grouped and standard ISM designs using the RDX
DU. Note that the results are similar for all other DUs.
Source: J. Hathaway for ACOE, 2012. Used with permission.

B.4.4.2 Results for HMX (M2-B)
For the HMX (10-m × 10-m DU) simulations, Tables B-8 through B-10 show the summaries from the evaluated simulations.
The coverage, bias, number of increments, and number of ISMs are used to create the coverage plot shown in Figure B-14.
Figure B-15 shows the panel of t-UCL histograms for all 40 sampling patterns evaluated on the HMX 10-m × 10-m DU.
Table B-10. Discrete summary for HMX DU (M2-B).
Source: J. Hathaway for ACOE, 2012. Used with permission.

Grid
Sampling
Type

Number of
Increments

Chebyshev
95% UCL
Coverage

95% t-UCL
Coverage

Chebyshev
RPD above
Mean

t RPD
above
Mean

Chebyshev
RPD below
Mean

t RPD
below
Mean

Random 9 97.65 85.55 140.04 69.15 13.56 15.08

Systematic 9 97.40 83.70 138.07 69.42 11.88 15.48

Random 16 99.05 87.00 110.39 51.50 6.36 11.33

Systematic 16 98.75 86.40 108.63 50.69 5.54 13.01

Random 30 99.55 87.45 83.39 37.49 4.61 8.02

Systematic 30 100.00 90.30 82.82 35.91  6.67

Random 100 100.00 92.20 48.01 19.73  4.15

Systematic 100 100.00 92.80 47.63 19.61  4.64
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Table B-11. Standard ISM summary for HMX DU (M2-B).
Source: J. Hathaway for ACOE, 2012. Used with permission.

Number
of ISMs

Number of
Increments

Chebyshev
95% UCL
Coverage

95% t-UCL
Coverage

Chebyshev
RPD above
Mean

t RPD
above
Mean

Chebyshev
RPD below
Mean

t RPD
below
Mean

2 16 90.70 93.60 69.45 94.49 9.84 10.13

3 16 96.50 92.20 59.36 41.10 8.33 7.33

4 16 97.55 90.10 52.77 30.81 5.48 6.15

5 16 98.85 91.75 47.53 24.89 2.97 4.66

2 30 90.20 92.75 50.93 68.96 6.64 6.10

3 30 96.15 92.85 40.70 27.96 5.22 5.69

4 30 98.20 94.00 36.95 20.86 3.59 4.59

5 30 98.75 92.35 33.07 17.44 3.89 3.90

2 49 90.30 92.85 39.87 54.62 6.10 6.01

3 49 96.40 92.35 34.71 23.86 4.60 4.47

4 49 97.65 91.90 29.76 16.71 2.97 3.68

5 49 98.95 92.50 26.96 13.85 2.55 3.56

2 100 91.40 93.30 28.15 38.71 4.67 4.69

3 100 96.95 93.60 22.86 15.56 3.77 3.41

4 100 98.65 94.15 20.29 11.39 1.55 2.27

5 100 99.10 94.05 18.50 9.47 2.10 2.24

Table B-12. Grouped ISM summary for HMX DU (M2-B).
Source: J. Hathaway for ACOE, 2012. Used with permission.

Number
of ISMs

Number of
Increments

Chebyshev
95% UCL
Coverage

95% t-UCL
Coverage

Chebyshev
RPD above
Mean

t RPD
above
Mean

Chebyshev
RPD below
Mean

t RPD
below
Mean



2 16 90.85 92.85 70.55 96.55 9.55 8.54

3 16 96.95 93.05 61.46 42.15 6.42 6.05

4 16 99.80 98.95 89.73 47.36 2.40 5.87

5 16 99.15 93.65 52.03 26.73 5.65 5.19

2 30 91.20 94.00 50.99 69.54 6.84 7.05

3 30 98.55 95.95 47.58 32.33 2.99 3.93

4 30 100.00 99.75 87.32 46.18  3.89

5 30 99.45 95.25 38.94 19.40 4.19 3.44

2 49 92.05 95.35 38.57 52.55 5.02 5.78

3 49 98.70 96.75 38.65 26.05 3.67 3.43

4 49 100.00 100.00 83.60 43.78   

5 49 99.90 97.90 33.76 16.12 2.76 2.63

2 100 93.50 95.00 29.49 40.74 5.66 5.22

3 100 99.20 97.15 27.85 19.02 2.88 2.07

4 100 100.00 100.00 81.47 42.85   

5 100 99.75 98.95 26.67 12.83 1.97 2.38



Figure B-14. Plot of the coverage statistics for each of the simulated sampling patterns as applied to the HMX
DU. Note that the different sampling patterns are displayed within the plot as well as 95% UCL type.
Source: J. Hathaway for ACOE, 2012. Used with permission.

This DU has some strong distributional heterogeneity, but the distribution of concentration values is not as skewed or
heavily right-tailed with a CV of 1.1. The mean is 0.132 with an SD of 0.146. When three or more replicates are used, the
coverage results for the grouped ISM patterns were near or above the designed criteria of 95% UCL for all but the ISM
composed of 16 increments. The standard ISM performed reasonably well for the 100-increment standard ISM design.
Specific observations from these simulations are noted below and support the consensus points listed in Table B-1:

The mean concentration estimates for grouped ISM and standard ISM sampling have the same expectation and
distribution (see Figure B-13).
The grouped ISM methods have equivalent or greater coverage than standard ISM when the same number of
ISMs and increments are used.
The RPD of the UCLs for grouped ISM is generally higher than that of standard ISM.
Grouped ISM, by its definition, provides an improved spatial picture of the concentrations within the site.
For these maps, the t-UCL may be expected to yield adequate coverage with 100-increment ISM designs.
As few as 30 increments can be used for DUs with less severe heterogeneity and still maintain coverage with a t-
UCL.
Systematic grid, random grid, or simple random sampling all generally give the same results in terms of
coverage, and the use of one or the other can be selected for ease of application (see Figure B-10).
In general, the Chebyshev method may be necessary to attain adequate coverage depending on the severity of
the heterogeneity.
The improvements in coverage are the more pronounced by increasing the number of increments (for example,
50 to 100) instead of the number of replicates (three to five).
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Figure B-15. Panel of histograms of the distribution of 95% t-UCL values for the 2,000 simulations. Note that
the red line identifies the true mean. The y-axis identifies the percent of 2,000 simulations in each bin and is
distorted to show the percentage in the low count bins.
Source: J. Hathaway for ACOE, 2012. Used with permission.
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